The Structure of Hopf Algebras Acting on Galois Extensions

Robert G. Underwood
Department of Mathematics and Computer Science Auburn University at Montgomery
Montgomery, Alabama

$$
\text { June 7, } 2016
$$

Abstract

Let L / K be a Galois extension with group G. Let λ denote the left regular representation of G in $\operatorname{Perm}(G)$. Then by Greither-Pareigis theory, there is a one-to-one correspondence between Hopf-Galois structures on L / K and regular subgroups of $\operatorname{Perm}(G)$ that are normalized by $\lambda(G)$. All of the Hopf algebras thus constructed are finite dimensional algebras over K. In this talk, we discuss the Wedderburn-Malcev decompositions of these Hopf algebras.

1. The Jacobson Radical

Let R be any ring. Then R is left-artinian if it has the DCC for left ideals, that is, every decreasing sequence of left ideals

$$
L_{1} \supseteq L_{2} \supseteq L_{3} \supseteq \cdots
$$

eventually stops: there exists an integer $N \geq 1$ for which

$$
L_{N}=L_{N+1}=L_{N+2}=\cdots
$$

Example 1.1. Every finite dimensional algebra over a field K is left artinian as a ring.

A left ideal L of R is a maximal left ideal if $L \neq R$ and there is no left ideal J with $L \subset J \subset R$.

The Jacobson radical $J(R)$ of a ring R is the the intersection of all of the maximal left ideals of R.

Example 1.2. $J\left(\mathbb{Z}_{p}\right)=p \mathbb{Z}_{p}$.

A ring R is Jacobson semisimple if $J(R)=0$.

Example 1.3. For any field $K, J\left(\operatorname{Mat}_{n}(K)\right)=0$ for $n \geq 1$.

For an arbitrary ring R, the Jacobson radical $J(R)$ seems difficult to calculate. Here is an alternate characterization:

Proposition 1.4. $J(R)$ consists of precisely those elements $x \in R$ for which $1-r x$ has a left inverse for all $r \in R$.

Proof. See [6, Propositon 8.31].

Further properties...

Proposition 1.5. $J(R)$ is a two-sided ideal of R.

Proof. See [6, Corollary 8.35(i)].

Proposition 1.6. $J(R / J(R))=0$, that is, $R / J(R)$ is Jacobson semisimple.
Proof. See [6, Corollary 8.35(ii)].

So, for a given ring R, is $J(R)$ the smallest two-sided ideal of R for which $R / J(R)$ is Jacobson semisimple?

Proposition 1.7. If R is left artinian, then $J(R)$ is nilpotent.

Proof. See [6, Proposition 8.34].

Proposition 1.8. Suppose that R is a commutative algebra which is finitely generated over a field. Then $J(R)$ is the nilradical of R.

Proof. By [6, Corollary 8.33], the nilradical of R is contained in $J(R)$. But since $J(R)$ is nilpotent, $J(R)$ consists of nilpotent elements, hence $J(R)$ is contained in the nilradical of R.

2. Semisimple Rings

A left ideal L of R is a minimal left ideal if $L \neq 0$ and there is no left ideal J with $0 \subset J \subset L$.

A ring R is left semisimple if it is a direct sum of minimal left ideals.

Example 2.1. Let K be a field, then

$$
K^{n}=\underbrace{K \times K \times \cdots \times K}_{n}
$$

is left semisimple for $n \geq 1$.
Proposition 2.2. A ring R is left semisimple if and only if every left ideal of R is a direct summand as a left R-module. Proof. See [6, Theorem 8.42].

Proposition 2.3. (Maschke's Theorem) Let G be a finite group and let K be a field whose characteristic does not divide $|G|$. Then the group ring $K G$ is a left semisimple ring.

Proof. (Sketch) In view of Proposition 2.2, we show that every left ideal L of $K G$ is a direct summand. As vector spaces over K,

$$
K G=L \oplus V
$$

so there is a K-map $\psi: K G \rightarrow L$ with $\psi(x)=x, \forall x \in L$. Now let $\Psi: K G \rightarrow K G$ be defined as

$$
\Psi(x)=\frac{1}{|G|} \sum_{g \in G} g \psi\left(g^{-1} x\right)
$$

Then $\operatorname{im}(\Psi) \subseteq L, \Psi(x)=x, \forall x \in L$, and Ψ is a $K G$-map. It follows that L is a direct summand as a $K G$-module.

Proposition 2.4. A ring R is left semisimple if and only if it is left artinian and $J(R)=0$.

Proof. See [6, Theorem 8.45].

Corollary 2.5. Let G be a finite group and let K be a field whose characteristic does not divide $|G|$. Then $J(K G)=0$.

So, in view of Proposition 1.4, for any non-zero x in $K G$, there must be an element $r \in K G$ for which $1-r x$ has no left inverse.

Proposition 2.6. (Wedderburn-Artin) A ring R is left semisimple if and only if it is isomorphic to the direct product of matrix rings over division rings.

Proof. (Sketch of "only if") Suppose that R is a direct sum of minimal left ideals,

$$
R=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{q}
$$

We may assume without loss of generality, that the first m summands, $L_{i}, 1 \leq i \leq m \leq q$, represent the isomorphism classes of all of the $L_{i}, 1 \leq i \leq q$. Let

$$
B_{1}=\sum_{L_{i} \cong L_{1}} L_{1}, \quad B_{2}=\sum_{L_{i} \cong L_{2}} L_{2}, \ldots, \quad B_{m}=\sum_{L_{i} \cong L_{m}} L_{m} .
$$

Then

$$
R=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{m}
$$

Let n_{i} be the number of summands in $B_{i}, 1 \leq i \leq m$.

Now,

$$
\begin{aligned}
R^{\mathrm{opp}} \cong & \operatorname{End}_{R}\left(B_{1}\right) \times \operatorname{End}_{R}\left(B_{2}\right) \times \cdots \times \operatorname{End}_{R}\left(B_{m}\right) \\
\cong & \operatorname{Mat}_{n_{1}}\left(\operatorname{End}_{R}\left(L_{1}\right)\right) \times \operatorname{Mat}_{n_{2}}\left(\operatorname{End}_{R}\left(L_{2}\right)\right) \times \cdots \\
& \cdots \times \operatorname{Mat}_{n_{m}}\left(\operatorname{End}_{R}\left(L_{m}\right)\right) \\
\cong & \operatorname{Mat}_{n_{1}}\left(C_{1}\right) \times \operatorname{Mat}_{n_{2}}\left(C_{2}\right) \times \cdots \times \operatorname{Mat}_{n_{m}}\left(C_{m}\right),
\end{aligned}
$$

for division rings $C_{1}, C_{2}, \ldots, C_{m}$.

Thus,

$$
\begin{aligned}
R & \cong\left(\operatorname{Mat}_{n_{1}}\left(C_{1}\right)\right)^{\text {opp }} \times\left(\operatorname{Mat}_{n_{2}}\left(C_{2}\right)\right)^{\text {opp }} \times \cdots \times\left(\operatorname{Mat}_{n_{m}}\left(C_{m}\right)\right)^{\text {opp }} \\
& \cong \operatorname{Mat}_{n_{1}}\left(C_{1}^{\text {opp }}\right) \times \operatorname{Mat}_{n_{2}}\left(C_{2}^{\text {opp }}\right) \times \cdots \times \operatorname{Mat}_{n_{m}}\left(C_{m}^{\text {opp }}\right) \\
& \cong \operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \operatorname{Mat}_{n_{2}}\left(D_{2}\right) \times \cdots \times \operatorname{Mat}_{n_{m}}\left(D_{m}\right)
\end{aligned}
$$

for division rings $D_{1}, D_{2}, \ldots, D_{m}$.

Proposition 2.7. (Wedderburn-Malcev) Let A be a finite dimensional algebra over a field K, and let $J(A)$ be its Jacobson radical. Then

$$
A / J(A) \cong \operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \operatorname{Mat}_{n_{2}}\left(D_{2}\right) \times \cdots \times \operatorname{Mat}_{n_{m}}\left(D_{m}\right)
$$

for integers $n_{1}, n_{2}, \ldots, n_{m}$ and division rings $D_{1}, D_{2}, \ldots, D_{m}$.

Proof. First note that $J(A / J(A))=0$ by Proposition 1.6. Moreover, $A / J(A)$ is finite dimensional over K, and so it is left artinian. Hence by Proposition 2.4, $A / J(A)$ is left semisimple. Now by Proposition 2.6, the result follows.

3. Greither-Pareigis Theory

Let L / K be a Galois extension with group G. Let H be a finite dimensional Hopf algebra over K.

Then L is an H-Galois extension of K if L is an H-module algebra and the K-linear map

$$
j: L \otimes_{K} H \rightarrow \operatorname{End}_{K}(L)
$$

given as $j(a \otimes h)(x)=a h(x)$ for $a, x \in L, h \in H$, is bijective.

If L is an H-Galois extension for some H, then L is said to have a Hopf-Galois structure via H.

Example 3.1. (Classical Hopf-Galois Structure) Let $K G$ be the group ring K-Hopf algebra. Then L is a $K G$-Galois extension of K; L admits the classical Hopf-Galois structure via KG.

But are there other Hopf-Galois structures on L / K ?

Theorem 3.2. (Greither-Pareigis) Let L / K be a Galois extension with group G with $n=[L: K]$. Let λ denote the left regular representation of G in $\operatorname{Perm}(G)$. There is a one-to-one correspondence between Hopf-Galois structures on L / K and regular subgroups of $\operatorname{Perm}(G)$ that are normalized by $\lambda(G)$.

One direction of this remarkable result works as follows.

Let N be a regular subgroup of $\operatorname{Perm}(G)$ normalized by $\lambda(G)$. Assume that G acts on $L N$ by as the Galois group on L, and by conjugation via $\lambda(G)$ on N. Let

$$
H=(L N)^{G}=\{x \in L N: g \cdot x=x, \forall g \in G\} .
$$

Then H is an n-dimensional K-Hopf algebra and L has a Hopf-Galois structure via H.

Example 3.3. Let $\rho: G \rightarrow \operatorname{Perm}(G)$ be the right regular representation of G in $\operatorname{Perm}(G)$. Then $\rho(G)$ is a regular subgroup of $\operatorname{Perm}(G)$ normalized by $\lambda(G)$. In this case

$$
H=(L \rho(G))^{G}=K \rho(G) \cong K G
$$

and the corresponding Hopf-Galois structure on L is the classical structure.

Proposition 3.4. (Koch, Kohl, Truman, U.) Let N be a regular subgroup of $\operatorname{Perm}(G)$ nomalized by $\lambda(G)$. Let $H=(L N)^{G}$ be the K-Hopf algebra acting on the Hopf-Galois extension L. Then H is a group ring if and only if $N=\rho(G)$, that is, H is a group ring if and only if L has the classical Hopf-Galois structure.

Proof. See [5, Proposition 1.2].

Corollary 3.5. (Koch, Kohl, Truman, U.) Let N be a regular subgroup of $\operatorname{Perm}(G)$ nomalized by $\lambda(G)$. Let $H=(L N)^{G}$ be the K-Hopf algebra acting on the Hopf-Galois extension L. Let $G(H)$ denote the set of grouplike elements in H. Then

$$
G(H)=N \cap \rho(G) .
$$

Proof. See [5, Corollary 1.3].

In general, to construct Hopf-Galois structures on L we search for regular subgroups normalized by $\lambda(G)$.

But: what is the structure of the K-Hopf algebras that arise from this construction?

How do they fall into K-algebra isomorphism classes?

How do they fall into K-Hopf algebra isomorphism classes?

Are they left semisimple as rings?

What are their Wedderburn-Malcev decompositions?

4. The Structure of $(L N)^{G}$

Proposition 4.1. (Koch, Kohl, Truman, U.) Let L / K be a
Galois extension with group G of degree $n=[L: K]$. Let $\alpha \in L$ be a normal basis generator satisfying $\operatorname{tr}(\alpha)=1$. Let N be a regular subgroup of $\operatorname{Perm}(G)$ that is normalized by $\lambda(G)$. For $n \in N$, set

$$
v_{n}=\sum_{g \in G} g(\alpha) \lambda(g) n \lambda(g)^{-1}
$$

Then $\left\{v_{n}\right\}_{n \in N}$ is a K-basis for $(L N)^{G}$.

Proof. See [5, Proposition 2.1].

Example 4.2. If $N=\rho(G)$, then since $\lambda(G)$ commutes with $\rho(G)$, we have

$$
v_{n}=\sum_{g \in G} g(\alpha) \lambda(g) n \lambda(g)^{-1}=\sum_{g \in G} g(\alpha) n=n
$$

Thus, as expected, $\left\{v_{n}\right\}_{n \in N}$ is the standard basis for the group ring $K G$.

Proposition/Conjecture 4.3. $H=(L N)^{G}$ is a left semisimple ring.

For $N=\rho(G)$: yes, of course, this it true by Maschke's Theorem.

For N abelian (H commutative): yes, the conjecture holds, since in this case $J(H)$ is the nilradical of H, which is trivial. The reason $J(H)$ is trivial is that $J(L N)$ is trivial and any nontrivial element of $J(H)$ would lift to a nontrivial element of $J(L N)$, a contradiction.

The following result might also be helpful in proving the conjecture.

Proposition 4.4. (Clark) Let $\phi: R \rightarrow S$ be a ring homomorphism. Suppose that there exists a finite set $\left\{x_{1}, \ldots, x_{n}\right\}$ of left R-module generators of S such that each x_{i} lies in the commutant $C_{S}(\phi(R))$. Then $\phi(J(R)) \subseteq J(S)$.

Proof. See [2, Proposition 3.23]

Proposition 4.4 could be used to prove Conjecture 4.3 by applying it to the case $R=H, S=L N$, where $\phi: H \rightarrow L N$ is the inclusion. Then if appropriate generators $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ could be found, then $J(H)$ would be trivial since $J(L N)$ is trivial.

5. Examples: Galois Group: Rank 4 Elementary Abelian

In what follows, we explicitly construct some $(L N)^{G}$, aka "Greither-Pareigis" Hopf algebras.

Let K be the splitting field of the polynomial $p(x)=x^{4}-10 x^{2}+1$ over \mathbb{Q}. Then $K=\mathbb{Q}(\sqrt{2}+\sqrt{3})$, and K is Galois with group $G \cong C_{2} \times C_{2}, G=\{1, \sigma, \tau, \sigma \tau\}, \sigma^{2}=\tau^{2}=1$.

The Galois action is given as

$$
\sigma(\sqrt{2}+\sqrt{3})=\sqrt{2}-\sqrt{3}, \quad \tau(\sqrt{2}+\sqrt{3})=-\sqrt{2}+\sqrt{3}
$$

Note that

$$
\alpha=\frac{1}{4}(1+\sqrt{2}+\sqrt{3}+\sqrt{6})
$$

is a normal basis generator for K / \mathbb{Q} with $\operatorname{tr}(\alpha)=1$.

Example 5.1. The subgroup $\rho(G)$ is a regular subgroup of $\operatorname{Perm}(G)$ normalized by $\lambda(G)=\rho(G)$. K is a Hopf-Galois extension of \mathbb{Q}; K has the classical Hopf-Galois structure via $H=(K \rho(G))^{G}=\mathbb{Q} G$. A basis for $\mathbb{Q} G$ is $\{1, \sigma, \tau, \sigma \tau\}$.

Proposition 5.2. $\mathbb{Q} G$ is left semisimple as a ring. Its
Wedderburn-Artin decomposition is

$$
\mathbb{Q} G \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}
$$

Proof. By Maschke's Theorem, $\mathbb{Q} G$ is a left semisimple ring. Hence by Wedderburn-Artin,

$$
\mathbb{Q} G \cong \operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \cdots \times \operatorname{Mat}_{n_{m}}\left(D_{m}\right),
$$

where $n_{i} \geq 1$ are integers and the D_{i} are division rings, $1 \leq i \leq m$.

Over \mathbb{C}, G has exactly 4 one-dimensional irreducible representations

$$
\rho_{i}: G \rightarrow \operatorname{GL}\left(W_{i}\right),
$$

$\operatorname{dim}_{\mathbb{C}}\left(W_{i}\right)=1$, given in the tables:

x	$\rho_{0}(x)$
1	1
σ	1
τ	1
$\sigma \tau$	1

x	$\rho_{1}(x)$
1	1
σ	1
τ	-1
$\sigma \tau$	-1

x	$\rho_{2}(x)$
1	1
σ	-1
τ	1
$\sigma \tau$	-1

x	$\rho_{3}(x)$
1	1
σ	-1
τ	-1
$\sigma \tau$	1

Let χ_{i} be the character of ρ_{i}. Then

$$
\begin{aligned}
& b_{1}=\frac{1}{4} \sum_{x \in G} \chi_{0}\left(x^{-1}\right) x=\frac{1}{4}(1+\sigma+\tau+\sigma \tau), \\
& b_{2}=\frac{1}{4} \sum_{x \in G} \chi_{1}\left(x^{-1}\right) x=\frac{1}{4}(1+\sigma-\tau-\sigma \tau), \\
& b_{3}=\frac{1}{4} \sum_{x \in G} \chi_{0}\left(x^{-1}\right) x=\frac{1}{4}(1-\sigma+\tau-\sigma \tau), \\
& b_{4}=\frac{1}{4} \sum_{x \in G} \chi_{1}\left(x^{-1}\right) x=\frac{1}{4}(1-\sigma-\tau+\sigma \tau),
\end{aligned}
$$

are pairwise orthogonal idempotents in $\mathbb{C} G$ with

$$
b_{1}+b_{2}+b_{3}+b_{4}=1
$$

cf. [7, Exercise 6.4].

Now, each irreducible representation extends to a \mathbb{C}-algebra homomorphism:

$$
\tilde{\rho}_{i}: \mathbb{C} G \rightarrow \operatorname{End}_{\mathbb{C}}\left(W_{i}\right) \cong \mathbb{C},
$$

$0 \leq i \leq 3$.
There is an isomorphism

$$
\tilde{\rho}: \mathbb{C} G \rightarrow \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}
$$

given as:

$$
\tilde{\rho}(x)=\left(\tilde{\rho}_{0}(x), \tilde{\rho}_{1}(x), \tilde{\rho}_{2}(x), \tilde{\rho}_{3}(x)\right) .
$$

One has

$$
\begin{aligned}
& \tilde{\rho}\left(b_{1}\right)=(1,0,0,0), \\
& \tilde{\rho}\left(b_{2}\right)=(0,1,0,0), \\
& \tilde{\rho}\left(b_{3}\right)=(0,0,1,0), \\
& \tilde{\rho}\left(b_{4}\right)=(0,0,0,1),
\end{aligned}
$$

cf. [7, Proposition 10].

Since $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ is also a \mathbb{Q}-basis for $\mathbb{Q} G$, one has

$$
\mathbb{Q} G \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}
$$

Example 5.3. (Byott) Let $\eta \in \operatorname{Perm}(G)$ be defined as

$$
\eta\left(\sigma^{k} \tau^{\prime}\right)=\sigma^{k-1} \tau^{I+k-1}, 0 \leq k, I \leq 1
$$

Then $\langle\eta\rangle \cong C_{4}$ is a regular subgroup of $\operatorname{Perm}(G)$ normalized by $\lambda(G)$.

By Theorem 3.2, K is a Hopf-Galois extension of \mathbb{Q}; K has a Hopf-Galois structure via the 4-dimensional \mathbb{Q}-Hopf algebra $H=(K\langle\eta\rangle)^{G}$.

By Proposition 4.1, a \mathbb{Q}-basis for H is $\left\{v_{1}, v_{\eta}, v_{\eta^{2}}, v_{\eta^{3}}\right\}$ with

$$
\begin{aligned}
v_{1} & =1 \\
v_{\eta} & =\frac{1}{2}\left(\eta+\eta^{3}\right)+\frac{\sqrt{3}}{2}\left(\eta-\eta^{3}\right) \\
v_{\eta^{2}} & =\eta^{2} \\
v_{\eta^{3}} & =\frac{1}{2}\left(\eta+\eta^{3}\right)-\frac{\sqrt{3}}{2}\left(\eta-\eta^{3}\right) .
\end{aligned}
$$

Proposition 5.4. The \mathbb{Q}-Hopf algebra H of Example 5.3 is left semisimple as a ring. Its Wedderburn-Artin decomposition is

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(\sqrt{-3})
$$

Proof. H contains $\frac{1+\eta^{2}}{4}$ and $\pm \frac{\eta+\eta^{3}}{4}$, and so, H contains

$$
\begin{aligned}
& b_{1}=\frac{1}{4}\left(1+\eta+\eta^{2}+\eta^{3}\right) \\
& b_{2}=\frac{1}{4}\left(1-\eta+\eta^{2}-\eta^{3}\right)
\end{aligned}
$$

and

$$
b_{3}=1-b_{1}-b_{2}=\frac{1-\eta^{2}}{4}
$$

b_{1}, b_{2}, b_{3} are mutually orthogonal idempotents.

Let

$$
a=\left(\frac{1-\eta^{2}}{2}\right)\left(\frac{1}{2}\left(\eta+\eta^{3}\right)+\frac{\sqrt{3}}{2}\left(\eta-\eta^{3}\right)\right)=\frac{\sqrt{3}}{2}\left(\eta-\eta^{2}\right)
$$

Then $\left\{b_{1}, b_{2}, b_{3}, a\right\}$ is a \mathbb{Q}-basis for H. Note that $a^{2}=-3 b_{3}$.

Now as a vector space over \mathbb{Q},

$$
H=\mathbb{Q} b_{1} \oplus \mathbb{Q} b_{2} \oplus \mathbb{Q} b_{3} \oplus \mathbb{Q} a,
$$

and as \mathbb{Q}-algebras,

$$
\begin{aligned}
H & \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} b_{3}[a], \\
& \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(\sqrt{-3}),
\end{aligned}
$$

the isomorphism in the last component given as $b_{3} \mapsto 1_{\mathbb{Q}(\sqrt{-3})}$, $a \mapsto \sqrt{-3}$. By Wedderburn-Artin, H is left semisimple.

By direct calculation,

$$
G(H)=N \cap \rho(G)=\left\{1, \eta^{2}\right\}
$$

6. Conclusions, I

Regarding the rank 4 elementary abelian example above:

In the case where K has the classical Hopf-Galois structure (Example 5.1),

$$
H_{1}=(K \rho(G))^{G}=\mathbb{Q} G \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q},
$$

In the case where K has the non-classical Hopf-Galois structure (Example 5.3),

$$
H_{2}=(K N)^{G} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(\sqrt{-3}) .
$$

The two Hopf-Galois structures on K are distinct in that the two Hopf algebras are non-isomorphic as \mathbb{Q}-algebras, and hence, certainly non-isomorphic as Hopf algebras.

Moreover, both Hopf algebras are left semisimple, and thus by Proposition 2.4, both Jacobson radicals are trivial.

7. Examples: Galois Group: Symmetric Group on 3 Letters

Let K be the splitting field of $x^{3}-2$ over \mathbb{Q}. Let ω denote a primitive 3rd root of unity and let $\alpha=\sqrt[3]{2}$. Then $K=\mathbb{Q}(\alpha, \omega)$ is Galois with group $S_{3}=\langle\sigma, \tau\rangle$ with $\sigma^{3}=\tau^{2}=1, \tau \sigma=\sigma^{2} \tau$.

The Galois action is given as $\sigma(\alpha)=\omega \alpha, \sigma(\omega)=\omega, \tau(\alpha)=\alpha$, $\tau(\omega)=\omega^{2}$.

Observe that

$$
\beta=\frac{1}{3}\left(1+\alpha+\alpha^{2}+\omega+\omega \alpha+\omega \alpha^{2}\right)
$$

is a normal basis generator for K / \mathbb{Q} with $\operatorname{tr}(\beta)=1$.

Example 7.1. The subgroup $\rho\left(S_{3}\right)$ is a regular subgroup of $\operatorname{Perm}\left(S_{3}\right)$ normalized by $\lambda\left(S_{3}\right)$. K is a Hopf-Galois extension of \mathbb{Q}; K has the classical Hopf-Galois structure via $H=\left(K \rho\left(S_{3}\right)\right)^{S_{3}}=\mathbb{Q} S_{3}$. A basis for $\mathbb{Q} S_{3}$ is $\left\{1, \sigma, \sigma^{2}, \tau, \tau \sigma, \tau \sigma^{2}\right\}$.

Proposition 7.2. $\mathbb{Q} S_{3}$ is left semisimple as a ring. Its
Wedderburn-Artin decomposition is

$$
\mathbb{Q} S_{3} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

Proof. (Computer-free proof) By Maschke's Theorem, $\mathbb{Q} S_{3}$ is a left semisimple ring.

Hence by Wedderburn-Artin,

$$
\mathbb{Q} S_{3} \cong \operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \cdots \times \operatorname{Mat}_{n_{m}}\left(D_{m}\right)
$$

where $n_{i} \geq 1$ are integers and the D_{i} are division rings, $1 \leq i \leq m$.

Over \mathbb{C}, there are exactly two 1 -dimensional representations of S_{3},

$$
\rho_{0}: S_{3} \rightarrow \operatorname{GL}\left(W_{0}\right),
$$

given as $\rho_{0}(x)=1, \forall x \in S_{3}$, and

$$
\rho_{1}: S_{3} \rightarrow \operatorname{GL}\left(W_{1}\right),
$$

defined as $\rho_{1}\left(\sigma^{i}\right)=1$, and $\rho_{1}\left(\tau \sigma^{i}\right)=-1$ for $i=0,1,2$.

There is exactly one 2-dimensional representation

$$
\rho_{2}: S_{3} \rightarrow \operatorname{GL}\left(W_{2}\right),
$$

defined as $\rho_{2}\left(\sigma^{i}\right)=\left(\begin{array}{cc}\omega^{i} & 0 \\ 0 & \omega^{2 i}\end{array}\right)$, and $\rho_{2}\left(\tau \sigma^{i}\right)=\left(\begin{array}{cc}0 & \omega^{2 i} \\ \omega^{i} & 0\end{array}\right)$, for $i=0,1,2$, where ω is a primitive 3 rd root of unity, $[7, \S 2.4, \S 2.5$, §5.3].

Let χ_{i} be the character of ρ_{i}. Then

$$
\begin{aligned}
& b_{1}=\frac{1}{6} \sum_{x \in S_{3}} \chi_{0}\left(x^{-1}\right) x=\frac{1}{6}\left(1+\sigma+\sigma^{2}+\tau+\tau \sigma+\tau \sigma^{2}\right), \\
& b_{2}=\frac{1}{6} \sum_{x \in S_{3}} \chi_{1}\left(x^{-1}\right) x=\frac{1}{6}\left(1+\sigma+\sigma^{2}-\tau-\tau \sigma-\tau \sigma^{2}\right),
\end{aligned}
$$

and

$$
b_{3}=\frac{1}{3} \sum_{x \in S_{3}} \chi_{2}\left(x^{-1}\right) x=\frac{1}{3}\left(2-\sigma-\sigma^{2}\right)
$$

are pairwise orthogonal idempotents in $\mathbb{C} S_{3}$ with

$$
b_{1}+b_{2}+b_{3}=1
$$

cf. [7, Exercise 6.4].

Now, each irreducible representation extends to a \mathbb{C}-algebra homomorphism:

$$
\tilde{\rho}_{i}: \mathbb{C} S_{3} \rightarrow \operatorname{End}_{\mathbb{C}}\left(W_{i}\right) \cong \operatorname{Mat}_{n_{i}}(\mathbb{C}), \quad n_{i}=\operatorname{dim}_{\mathbb{C}}\left(W_{i}\right)
$$

$0 \leq i \leq 2$.
There is an isomorphism

$$
\tilde{\rho}: \mathbb{C} S_{3} \rightarrow \mathbb{C} \times \mathbb{C} \times \operatorname{Mat}_{2}(\mathbb{C})
$$

given as:

$$
\tilde{\rho}(x)=\left(\tilde{\rho}_{0}(x), \tilde{\rho}_{1}(x), \tilde{\rho}_{2}(x)\right)
$$

One has

$$
\begin{aligned}
& \tilde{\rho}\left(b_{1}\right)=\left(1,0,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right), \\
& \tilde{\rho}\left(b_{2}\right)=\left(0,1,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right), \\
& \tilde{\rho}\left(b_{3}\right)=\left(0,0,\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) .
\end{aligned}
$$

cf. [7, Proposition 10].

We seek 4 elements of $\mathbb{C} S_{3}$ which correspond to a basis for the simple component $\operatorname{Mat}_{2}(\mathbb{C})$.

We find elements $b_{1,1}, b_{1,2}, b_{2,1}, b_{2,2} \in \mathbb{C} S_{3}$ which satisfy the multiplication table

	$b_{1,1}$	$b_{1,2}$	$b_{2,1}$	$b_{2,2}$
$b_{1,1}$	$b_{1,1}$	$b_{1,2}$	0	0
$b_{1,2}$	0	0	$b_{1,1}$	$b_{1,2}$
$b_{2,1}$	$b_{2,1}$	$b_{2,2}$	0	0
$b_{2,2}$	0	0	$b_{2,1}$	$b_{2,2}$

We require that

$$
b_{1,1}+b_{2,2}=b_{3}=\frac{1}{3}\left(2-\sigma-\sigma^{2}\right)
$$

with $b_{1,1}^{2}=b_{1,1}$ and $b_{2,2}^{2}=b_{2,2}$, and so we guess that

$$
b_{1,1}=\frac{1}{3}\left(1-\sigma+\tau \sigma-\tau \sigma^{2}\right),
$$

and

$$
b_{2,2}=\frac{1}{3}\left(1-\sigma^{2}-\tau \sigma+\tau \sigma^{2}\right) .
$$

(Note: I used trial and error, but one could probably solve a non-linear system to get this.)

Now for $b_{1,2}$ and $b_{2,1}$: We require that

$$
\left(b_{1,2}+b_{2,1}\right)^{2}=b_{1,1}+b_{2,2}=\frac{1}{3}\left(2-\sigma-\sigma^{2}\right)
$$

and so, we could guess that

$$
b_{1,2}+b_{2,1}=\frac{1}{3} \tau\left(2-\sigma-\sigma^{2}\right)
$$

since $\frac{1}{3}\left(2-\sigma-\sigma^{2}\right)$ is idempotent and $\tau^{2}=1$.
But we also know that $b_{1,2}$ satisfies the equation $b_{2,2} X=0$, which converts to a 6×6 linear homogeneous system with many solutions, one of which is

$$
b_{1,2}=-\frac{1}{3}\left(\sigma-\sigma^{2}-\tau+\tau \sigma^{2}\right) .
$$

With this choice for $b_{1,2}$, then

$$
b_{2,1}=\frac{1}{3}\left(\sigma-\sigma^{2}+\tau-\tau \sigma\right) .
$$

Now (as one can check) a \mathbb{C}-basis for $\mathbb{C} S_{3}$ is

$$
B^{\prime}=\left\{b_{1}, b_{2}, b_{1,1}, b_{1,2}, b_{2,1}, b_{2,2}\right\}
$$

with

$$
\begin{aligned}
b_{1} & =\frac{1}{6}\left(1+\sigma+\sigma^{2}+\tau+\tau \sigma+\tau \sigma^{2}\right), \\
b_{2} & =\frac{1}{6}\left(1+\sigma+\sigma^{2}-\tau-\tau \sigma-\tau \sigma^{2}\right), \\
b_{1,1} & =\frac{1}{3}\left(1-\sigma+\tau \sigma-\tau \sigma^{2}\right), \\
b_{1,2} & =-\frac{1}{3}\left(\sigma-\sigma^{2}-\tau+\tau \sigma^{2}\right), \\
b_{2,1} & =\frac{1}{3}\left(\sigma-\sigma^{2}+\tau-\tau \sigma\right), \\
b_{2,2} & =\frac{1}{3}\left(1-\sigma^{2}-\tau \sigma+\tau \sigma^{2}\right) .
\end{aligned}
$$

The \mathbb{C}-algebra isomorphism

$$
\tilde{\rho}: \mathbb{C} S_{3} \rightarrow \mathbb{C} \times \mathbb{C} \times \operatorname{Mat}_{2}(\mathbb{C})
$$

is now given as

$$
\begin{aligned}
\tilde{\rho}\left(b_{1}\right) & =\left(1,0,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right) \\
\tilde{\rho}\left(b_{2}\right) & =\left(0,1,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right) \\
\tilde{\rho}\left(b_{1,1}\right) & =\left(0,0, \frac{1}{3}\left(\begin{array}{cc}
1-\omega & \omega^{2}-\omega \\
\omega-\omega^{2} & 1-\omega^{2}
\end{array}\right)\right) \\
\tilde{\rho}\left(b_{1,2}\right) & =\left(0,0, \frac{1}{3}\left(\begin{array}{cc}
\omega^{2}-\omega & 1-\omega^{2} \\
1-\omega & \omega-\omega^{2}
\end{array}\right)\right) \\
\tilde{\rho}\left(b_{2,1}\right) & =\left(0,0, \frac{1}{3}\left(\begin{array}{cc}
\omega-\omega^{2} & 1-\omega^{2} \\
1-\omega & \omega^{2}-\omega
\end{array}\right)\right) \\
\tilde{\rho}\left(b_{2,2}\right) & =\left(0,0, \frac{1}{3}\left(\begin{array}{cc}
1-\omega^{2} & \omega-\omega^{2} \\
\omega^{2}-\omega & 1-\omega
\end{array}\right)\right)
\end{aligned}
$$

Now, B^{\prime} is also a \mathbb{Q}-basis for $\mathbb{Q} S_{3}$. Hence, there is a \mathbb{Q}-algebra isomorphism

$$
\begin{aligned}
\phi: \mathbb{Q} S_{3} & \rightarrow \mathbb{Q} \times \mathbb{Q} \times \mathrm{Mat}_{2}(\mathbb{Q}) \\
\phi\left(b_{1}\right) & =\left(1,0,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right) \\
\phi\left(b_{2}\right) & =\left(0,1,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right) \\
\phi\left(b_{1,1}\right) & =\left(0,0,\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right) \\
\phi\left(b_{1,2}\right) & =\left(0,0,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \\
\phi\left(b_{2,1}\right) & =\left(0,0,\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right) \\
\phi\left(b_{2,2}\right) & =\left(0,0,\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right) .
\end{aligned}
$$

Example 7.3. Let $\lambda: S_{3} \rightarrow \operatorname{Perm}\left(S_{3}\right)$ denote the left regular representation of S_{3} in $\operatorname{Perm}\left(S_{3}\right) ; \lambda\left(S_{3}\right)$ is a subgroup of Perm $\left(S_{3}\right)$ normalized by $\lambda\left(S_{3}\right)$. Then K is a Hopf-Galois extension of \mathbb{Q}; K has a Hopf-Galois structure via the 6 -dimensional \mathbb{Q}-Hopf algebra $H=\left(K \lambda\left(S_{3}\right)\right)^{S_{3}}$.

Proposition 7.4. H is left semisimple as a ring. Its Wedderburn-Artin decomposition is

$$
H \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

Proof. By [1, (6.12) Example, p. 55],

$$
H=\left\{a_{0}+a_{1} \sigma+\tau\left(a_{1}\right) \sigma^{2}+b_{0} \tau+\sigma^{2}\left(b_{0}\right) \sigma \tau+\sigma\left(b_{0}\right) \sigma^{2} \tau\right\}
$$

where $a_{0} \in \mathbb{Q}, a_{1} \in \mathbb{Q}(\omega)$, and $b_{0} \in \mathbb{Q}(\alpha)$.

Write $a_{1}=a_{1,0}+a_{1,1} \omega, b_{0}=b_{0,0}+b_{0,1} \alpha+b_{0,2} \alpha^{2}$, for $a_{1,0}, a_{1,1}, b_{0,0}, b_{0,1}, b_{0,2} \in \mathbb{Q}$.

Then a typical element of H can be written as

$$
\begin{aligned}
& a_{0}+\left(a_{1,0}+a_{1,1} \omega\right) \sigma+\left(a_{1,0}+a_{1,1} \omega^{2}\right) \sigma^{2}+\left(b_{0,0}+b_{0,1} \alpha+b_{0,2} \alpha^{2}\right) \tau \\
+ & \left(b_{0,0}+b_{0,1} \alpha \omega^{2}+b_{0,2} \alpha^{2} \omega\right) \sigma \tau+\left(b_{0,0}+b_{0,1} \alpha \omega+b_{0,2} \alpha^{2} \omega^{2}\right) \sigma^{2} \tau \\
& =a_{0}+a_{1,0}\left(\sigma+\sigma^{2}\right)+a_{1,1}\left(\omega \sigma+\omega^{2} \sigma^{2}\right)+b_{0,0}\left(\tau+\sigma \tau+\sigma^{2} \tau\right) \\
+ & b_{0,1}\left(\alpha \tau+\alpha \omega^{2} \sigma \tau+\alpha \omega \sigma^{2} \tau\right)+b_{0,2}\left(\alpha^{2} \tau+\alpha^{2} \omega \sigma \tau+\alpha^{2} \omega^{2} \sigma^{2} \tau\right)
\end{aligned}
$$

Thus

$$
C=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
$$

with

$$
\begin{aligned}
& v_{1}=1 \\
& v_{2}=\sigma+\sigma^{2}, \\
& v_{3}=\omega \sigma+\omega^{2} \sigma^{2}, \\
& v_{4}=\tau+\sigma \tau+\sigma^{2} \tau \\
& v_{5}=\alpha \tau+\alpha \omega^{2} \sigma \tau+\alpha \omega \sigma^{2} \tau, \\
& v_{6}=\alpha^{2} \tau+\alpha^{2} \omega \sigma \tau+\alpha^{2} \omega^{2} \sigma^{2} \tau
\end{aligned}
$$

is a \mathbb{Q}-basis for H; this is the "standard" basis for H.

The multiplication table for the v_{i} is:
(2)

	1	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
1	1	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
v_{2}	v_{2}	$2 v_{2}$	$-1-v_{2}-v_{3}$	$2 v_{4}$	$-v_{5}$	$-v_{6}$
v_{3}	v_{3}	$-1-v_{2}-v_{3}$	$2+v_{3}$	$-v_{4}$	$-v_{5}$	$2 v_{6}$
v_{4}	v_{4}	$2 v_{4}$	$-v_{4}$	$3+3 v_{2}$	0	0
v_{5}	v_{5}	$-v_{5}$	$2 v_{5}$	0	0	$6-6 v_{2}-6 v_{3}$
v_{6}	v_{6}	$-v_{6}$	$-v_{6}$	0	$6+6 v_{3}$	0

Now, as in Proposition 7.2, $c_{1}=b_{1}=\frac{1}{6}\left(1+v_{2}+v_{4}\right)$ and $c_{2}=b_{2}=\frac{1}{6}\left(1+v_{2}-v_{4}\right)$ form a pair of mutually orthogonal idempotents in H.

We search for matrix units satisfying table (1).

One has that

$$
c_{1,1}=\frac{1}{3}\left(1+v_{3}\right)=\frac{1}{3}\left(1+\omega \sigma+\omega^{2} \sigma^{2}\right)
$$

and

$$
c_{2,2}=\frac{1}{3}\left(1-v_{2}-v_{3}\right)=\frac{1}{3}\left(1+\omega^{2} \sigma+\omega \sigma^{2}\right)
$$

are a pair of orthogonal idempotents.

A bit of trial and error using table (2) (really!) shows that the other matrix units are $c_{1,2}=\frac{1}{6} v_{6}$ and $c_{2,1}=\frac{1}{3} v_{5}$.

The set

$$
C^{\prime}=\left\{c_{1}, c_{2}, c_{1,1}, c_{1,2}, c_{2,1}, c_{2,2}\right\}
$$

is a \mathbb{Q}-basis for H. There is a \mathbb{Q}-algebra isomorphism:

$$
\begin{aligned}
\psi: H & \rightarrow \mathbb{Q} \times \mathbb{Q} \times \mathrm{Mat}_{2}(\mathbb{Q}), \\
c_{1} & \mapsto\left(1,0,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right), \\
c_{2} & \mapsto\left(0,1,\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right), \\
c_{1,1} & \mapsto\left(0,0,\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right), \\
c_{1,2} & \mapsto\left(0,0,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right), \\
c_{2,1} & \mapsto\left(0,0,\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right), \\
c_{2,2} & \mapsto\left(0,0,\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right) .
\end{aligned}
$$

Clearly, H is left semisimple.

Recall that

$$
\beta=\frac{1}{3}\left(1+\alpha+\alpha^{2}+\omega+\omega \alpha+\omega \alpha^{2}\right)
$$

is a normal basis generator for K / \mathbb{Q}. By Proposition 4.1, there is another \mathbb{Q}-basis for H,

$$
D=\left\{v_{1}=1, v_{\sigma}, v_{\sigma^{2}}, v_{\tau}, v_{\tau \sigma}, v_{\tau \sigma^{2}}\right\}
$$

where

$$
v_{x}=\sum_{g \in S_{3}} g(\beta) \lambda(g) \lambda(x) \lambda(g)^{-1}
$$

for $x \in S_{3}$.

The basis matrix of D (with respect to C) is:

$$
M_{D}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 0 & 1 / 3 & 1 / 3 & -2 / 3 \\
0 & 0 & 0 & 1 / 3 & -2 / 3 & 1 / 3
\end{array}\right)
$$

One has

$$
M_{D} v_{D}=v
$$

Now,

$$
M_{D}^{-1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 0
\end{array}\right)
$$

so that

$$
M_{D}^{-1} v=v_{D}
$$

Thus, in terms of D, the basis C^{\prime} computed above is

$$
\begin{gathered}
C^{\prime}=\left\{\frac{1}{6}\left(1+v_{\sigma}+v_{\sigma^{2}}+v_{\tau}+v_{\tau \sigma}+v_{\tau \sigma^{2}}\right), \frac{1}{6}\left(1+v_{\sigma}+v_{\sigma^{2}}-v_{\tau}-v_{\tau \sigma}-v_{\tau \sigma^{2}}\right),\right. \\
\\
\left.\frac{1}{3}\left(1-v_{\sigma^{2}}\right), \frac{1}{6}\left(v_{\tau}-v_{\tau \sigma}\right), \frac{1}{3}\left(v_{\tau}-v_{\tau \sigma^{2}}\right), \frac{1}{3}\left(1-v_{\sigma}\right)\right\} .
\end{gathered}
$$

8. Conclusions, II

Regarding the S_{3} examples above:

In the case where K has the classical Hopf-Galois structure (Example 7.1),

$$
H_{1}=\left(K \rho\left(S_{3}\right)\right)^{S_{3}}=\mathbb{Q} S_{3} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

In the case where K has the non-classical Hopf-Galois structure (Example 7.3),

$$
H_{2}=\left(K \lambda\left(S_{3}\right)\right)^{S_{3}} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

By a direct computation (or use $[1,(6.9)$ Example]),

$$
G\left(H_{2}\right)=\lambda\left(S_{3}\right) \cap \rho\left(S_{3}\right)=\{1\} .
$$

These two Hopf algebras are isomorphic as \mathbb{Q}-algebras, yet are non-isomorphic as Hopf algebras.

Both Hopf algebras are left semisimple, and thus by Proposition 2.4, both Jacobson radicals are trivial.

9. A New Hopf Algebra Structure

Fact 9.1. Suppose $\varphi: S \rightarrow G$ is a bijection of sets with G a group. Then there is a unique group structure on S that makes φ an isomorphism of groups.

For $x, y \in S$, define

$$
x y=\varphi^{-1}(\varphi(x) \varphi(y))
$$

Proposition 9.2. Let K be a field. Let $\varphi: A \rightarrow H$ be an isomorphism of K-algebras with H a K-Hopf algebra. Then there is a unique Hopf algebra structure on A that makes φ an isomorphism of K-Hopf algebras.

Proof. Define $\Delta_{A}: A \rightarrow A \otimes_{K} A$ by the rule

$$
\Delta_{A}(a)=\left(\varphi^{-1} \otimes \varphi^{-1}\right) \Delta_{H}(\varphi(a)),
$$

define $\epsilon_{A}: A \rightarrow K$ by the rule

$$
\epsilon_{A}(a)=\epsilon_{H}(\varphi(a))
$$

and define $S_{A}: A \rightarrow A$ by the rule

$$
S_{A}(a)=\varphi^{-1} S_{H}(\varphi(a))
$$

for $a \in A$.

Then $\left(A, m_{A}, \lambda_{A}, \Delta_{A}, \epsilon_{A}, S_{A}\right)$ is a K-Hopf algebra and φ is an isomorphism of K-Hopf algebras.

Now by Propositions 7.2 and 7.4, the composition of maps

$$
\mathbb{Q} S_{3} \xrightarrow{\phi} \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q}) \xrightarrow{\psi^{-1}} H,
$$

is an isomorphism of \mathbb{Q}-algebras.

Put $\varphi=\psi^{-1} \circ \phi$. Then by Proposition 9.2, there is a \mathbb{Q}-Hopf algebra structure on $\mathbb{Q} S_{3}$ with

$$
\begin{gathered}
\Delta_{\mathbb{Q} S_{3}}(a)=\left(\varphi^{-1} \otimes \varphi^{-1}\right) \Delta_{H}(\varphi(a)), \\
\epsilon_{\mathbb{Q} S_{3}}(a)=\epsilon_{H}(\varphi(a)),
\end{gathered}
$$

and

$$
S_{\mathbb{Q} S_{3}}(a)=\varphi^{-1} S_{H}(\varphi(a))
$$

for $a \in \mathbb{Q} S_{3} ; \varphi$ is an isomorphism of \mathbb{Q}-Hopf algebras.

This \mathbb{Q}-Hopf algebra structure on $\mathbb{Q} S_{3}$ admits exactly one grouplike element (since H has only one grouplike).

Consequently, this \mathbb{Q}-Hopf algebra structure on $\mathbb{Q} S_{3}$ is distinct from the ordinary \mathbb{Q}-Hopf algebra structure on $\mathbb{Q} S_{3}$ (in which there are 6 grouplikes).

What is $\Delta_{\mathbb{Q} S_{3}}(\sigma)$?
[1] L. N. Childs,
Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, AMS: Mathematical Surveys and Monographs, 80, (2000).
[2] P. Clark,
Noncommutative Algebra
retreived from the internet, May 2016.

- [3] R. Farnsteiner,

The Theorem of Wedderburn-Malcev: $H^{2}(A, N)$ and extensions, retrieved from the internet, August 2015.
© [4] C. Greither and B. Pareigis, Hopf galois theory for separable field extensions, J. Algebra, 106, 239-258, (1987).

R [5] A. Koch, T. Kohl, P. Truman, R. Underwood, On the structure of Hopf algebras acting on separable algebras,
working draft: April 13, 2016.
囯 [6] J. Rotman,
Advanced Modern Algebra, Pearson, Upper Saddle River, New Jersey, (2002).

目 [7] J.-P. Serre,
Linear Representations of Finite Groups
GTM 42, Springer-Verlag, New York, (1977).
[8] [8] Wedderburn,
On hypercomplex numbers,
Proc. London Math. Soc., 6, 77-118, (1908).

Appendix: Decomposition of $\mathbb{Q} S_{3}$ (Computer Solution)

gap> LoadPackage("wedderga");
true
gap> QG:=GroupRing(Rationals,SymmetricGroup(3)); <algebra-with-one over Rationals, with 2 generators>
gap> WedderburnDecomposition(QG);
[Rationals, Rationals, <crossed product with center Rationals over CF(3) of a group of size 2>]
gap> WedderburnDecompositionInfo(QG);
[[1, Rationals], [1, Rationals], [1, Rationals, 3, [2, 2, 0]]]

What this means is that

$$
\mathbb{Q} S_{3} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}(\omega)\left[x: \omega x=x \omega^{2}, x^{2}=1\right]
$$

where ω is a primitive 3rd root of unity; $\{1, \omega, x, \omega x\}$ is a \mathbb{Q}-basis for the component $\mathbb{Q}(\omega)\left[x: \omega x=x \omega^{2}, x^{2}=1\right]$.

Now, the companion matrix of the polynomial $x^{2}+x+1$ is
$W=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$, and the companion matrix of $x^{2}-1$ is
$X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Moreover, $W X=X W^{2}$.

As one can check, $\left\{I_{2}, W, X, W X\right\}$ is a \mathbb{Q}-basis for $\operatorname{Mat}_{2}(\mathbb{Q})$, thus as rings,

$$
\mathbb{Q}(\omega)\left[x: \omega x=x \omega^{2}, x^{2}=1\right] \cong \operatorname{Mat}_{2}(\mathbb{Q})
$$

Thus,

$$
\mathbb{Q} S_{3} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

