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Abstract

Let L/K be a Galois extension with group G . Let λ denote the left
regular representation of G in Perm(G ). Then by Greither-Pareigis
theory, there is a one-to-one correspondence between Hopf-Galois
structures on L/K and regular subgroups of Perm(G ) that are
normalized by λ(G ). All of the Hopf algebras thus constructed are
finite dimensional algebras over K . In this talk, we discuss the
Wedderburn-Malcev decompositions of these Hopf algebras.
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1. The Jacobson Radical

Let R be any ring. Then R is left-artinian if it has the DCC for
left ideals, that is, every decreasing sequence of left ideals

L1 ⊇ L2 ⊇ L3 ⊇ · · ·

eventually stops: there exists an integer N ≥ 1 for which

LN = LN+1 = LN+2 = · · ·

Example 1.1. Every finite dimensional algebra over a field K is
left artinian as a ring.
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A left ideal L of R is a maximal left ideal if L 6= R and there is no
left ideal J with L ⊂ J ⊂ R.

The Jacobson radical J(R) of a ring R is the the intersection of
all of the maximal left ideals of R.

Example 1.2. J(Zp) = pZp.

A ring R is Jacobson semisimple if J(R) = 0.

Example 1.3. For any field K , J(Matn(K )) = 0 for n ≥ 1.
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For an arbitrary ring R, the Jacobson radical J(R) seems difficult
to calculate. Here is an alternate characterization:

Proposition 1.4. J(R) consists of precisely those elements x ∈ R
for which 1− rx has a left inverse for all r ∈ R.

Proof. See [6, Propositon 8.31]. 2
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Further properties...

Proposition 1.5. J(R) is a two-sided ideal of R.

Proof. See [6, Corollary 8.35(i)]. 2

Proposition 1.6. J(R/J(R)) = 0, that is, R/J(R) is Jacobson
semisimple.
Proof. See [6, Corollary 8.35(ii)]. 2

So, for a given ring R, is J(R) the smallest two-sided ideal of R for
which R/J(R) is Jacobson semisimple?
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Proposition 1.7. If R is left artinian, then J(R) is nilpotent.

Proof. See [6, Proposition 8.34]. 2

Proposition 1.8. Suppose that R is a commutative algebra which
is finitely generated over a field. Then J(R) is the nilradical of R.

Proof. By [6, Corollary 8.33], the nilradical of R is contained in
J(R). But since J(R) is nilpotent, J(R) consists of nilpotent
elements, hence J(R) is contained in the nilradical of R. 2
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2. Semisimple Rings

A left ideal L of R is a minimal left ideal if L 6= 0 and there is no
left ideal J with 0 ⊂ J ⊂ L.

A ring R is left semisimple if it is a direct sum of minimal left
ideals.

Example 2.1. Let K be a field, then

Kn = K × K × · · · × K︸ ︷︷ ︸
n

is left semisimple for n ≥ 1.

Proposition 2.2. A ring R is left semisimple if and only if every
left ideal of R is a direct summand as a left R-module.
Proof. See [6, Theorem 8.42]. 2
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Proposition 2.3. (Maschke’s Theorem) Let G be a finite group
and let K be a field whose characteristic does not divide |G |. Then
the group ring KG is a left semisimple ring.

Proof. (Sketch) In view of Proposition 2.2, we show that every left
ideal L of KG is a direct summand. As vector spaces over K ,

KG = L⊕ V ,

so there is a K -map ψ : KG → L with ψ(x) = x ,∀x ∈ L. Now let
Ψ : KG → KG be defined as

Ψ(x) =
1

|G |
∑
g∈G

gψ(g−1x).

Then im(Ψ) ⊆ L, Ψ(x) = x , ∀x ∈ L, and Ψ is a KG -map. It
follows that L is a direct summand as a KG -module. 2
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Proposition 2.4. A ring R is left semisimple if and only if it is left
artinian and J(R) = 0.

Proof. See [6, Theorem 8.45]. 2

Corollary 2.5. Let G be a finite group and let K be a field whose
characteristic does not divide |G |. Then J(KG ) = 0.

So, in view of Proposition 1.4, for any non-zero x in KG , there
must be an element r ∈ KG for which 1− rx has no left inverse.
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Proposition 2.6. (Wedderburn-Artin) A ring R is left
semisimple if and only if it is isomorphic to the direct product of
matrix rings over division rings.

Proof. (Sketch of “only if”) Suppose that R is a direct sum of
minimal left ideals,

R = L1 ⊕ L2 ⊕ · · · ⊕ Lq.

We may assume without loss of generality, that the first m
summands, Li , 1 ≤ i ≤ m ≤ q, represent the isomorphism classes
of all of the Li , 1 ≤ i ≤ q. Let

B1 =
∑
Li∼=L1

L1, B2 =
∑
Li∼=L2

L2, . . . , Bm =
∑

Li∼=Lm

Lm.

Then
R = B1 ⊕ B2 ⊕ · · · ⊕ Bm.

Let ni be the number of summands in Bi , 1 ≤ i ≤ m.
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Now,

Ropp ∼= EndR(B1)× EndR(B2)× · · · × EndR(Bm)
∼= Matn1(EndR(L1))×Matn2(EndR(L2))× · · ·
· · · ×Matnm(EndR(Lm))

∼= Matn1(C1)×Matn2(C2)× · · · ×Matnm(Cm),

for division rings C1,C2, . . . ,Cm.

Thus,

R ∼= (Matn1(C1))opp × (Matn2(C2))opp × · · · × (Matnm(Cm))opp

∼= Matn1(C opp
1 )×Matn2(C opp

2 )× · · · ×Matnm(C opp
m )

∼= Matn1(D1)×Matn2(D2)× · · · ×Matnm(Dm),

for division rings D1,D2, . . . ,Dm. 2
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Proposition 2.7. (Wedderburn-Malcev) Let A be a finite
dimensional algebra over a field K , and let J(A) be its Jacobson
radical. Then

A/J(A) ∼= Matn1(D1)× Matn2(D2)× · · · ×Matnm(Dm),

for integers n1, n2, . . . , nm and division rings D1,D2, . . . ,Dm.

Proof. First note that J(A/J(A)) = 0 by Proposition 1.6.
Moreover, A/J(A) is finite dimensional over K , and so it is left
artinian. Hence by Proposition 2.4, A/J(A) is left semisimple.
Now by Proposition 2.6, the result follows. 2
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3. Greither-Pareigis Theory

Let L/K be a Galois extension with group G . Let H be a finite
dimensional Hopf algebra over K .

Then L is an H-Galois extension of K if L is an H-module
algebra and the K -linear map

j : L⊗K H → EndK (L),

given as j(a⊗ h)(x) = ah(x) for a, x ∈ L, h ∈ H, is bijective.

If L is an H-Galois extension for some H, then L is said to have a
Hopf-Galois structure via H.
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Example 3.1. (Classical Hopf-Galois Structure) Let KG be the
group ring K -Hopf algebra. Then L is a KG -Galois extension of K ;
L admits the classical Hopf-Galois structure via KG .

But are there other Hopf-Galois structures on L/K?
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Theorem 3.2. (Greither-Pareigis) Let L/K be a Galois extension
with group G with n = [L : K ]. Let λ denote the left regular
representation of G in Perm(G ). There is a one-to-one
correspondence between Hopf-Galois structures on L/K and
regular subgroups of Perm(G ) that are normalized by λ(G ).

One direction of this remarkable result works as follows.

Let N be a regular subgroup of Perm(G ) normalized by λ(G ).
Assume that G acts on LN by as the Galois group on L, and by
conjugation via λ(G ) on N. Let

H = (LN)G = {x ∈ LN : g · x = x ,∀g ∈ G}.

Then H is an n-dimensional K -Hopf algebra and L has a
Hopf-Galois structure via H.
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Example 3.3. Let ρ : G → Perm(G ) be the right regular
representation of G in Perm(G ). Then ρ(G ) is a regular subgroup
of Perm(G ) normalized by λ(G ). In this case

H = (Lρ(G ))G = Kρ(G ) ∼= KG ,

and the corresponding Hopf-Galois structure on L is the classical
structure.

Proposition 3.4. (Koch, Kohl, Truman, U.) Let N be a regular
subgroup of Perm(G ) nomalized by λ(G ). Let H = (LN)G be the
K -Hopf algebra acting on the Hopf-Galois extension L. Then H is
a group ring if and only if N = ρ(G ), that is, H is a group ring if
and only if L has the classical Hopf-Galois structure.

Proof. See [5, Proposition 1.2].
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Corollary 3.5. (Koch, Kohl, Truman, U.) Let N be a regular
subgroup of Perm(G ) nomalized by λ(G ). Let H = (LN)G be the
K -Hopf algebra acting on the Hopf-Galois extension L. Let G (H)
denote the set of grouplike elements in H. Then

G (H) = N ∩ ρ(G ).

Proof. See [5, Corollary 1.3].
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In general, to construct Hopf-Galois structures on L we search for
regular subgroups normalized by λ(G ).

But: what is the structure of the K -Hopf algebras that arise from
this construction?

How do they fall into K -algebra isomorphism classes?

How do they fall into K -Hopf algebra isomorphism classes?

Are they left semisimple as rings?

What are their Wedderburn-Malcev decompositions?
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4. The Structure of (LN)G

Proposition 4.1. (Koch, Kohl, Truman, U.) Let L/K be a
Galois extension with group G of degree n = [L : K ]. Let α ∈ L be
a normal basis generator satisfying tr(α) = 1. Let N be a regular
subgroup of Perm(G ) that is normalized by λ(G ). For n ∈ N, set

vn =
∑
g∈G

g(α)λ(g)nλ(g)−1.

Then {vn}n∈N is a K -basis for (LN)G .

Proof. See [5, Proposition 2.1]. 2
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Example 4.2. If N = ρ(G ), then since λ(G ) commutes with ρ(G ),
we have

vn =
∑
g∈G

g(α)λ(g)nλ(g)−1 =
∑
g∈G

g(α)n = n.

Thus, as expected, {vn}n∈N is the standard basis for the group
ring KG .
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Proposition/Conjecture 4.3. H = (LN)G is a left semisimple
ring.

For N = ρ(G ): yes, of course, this it true by Maschke’s Theorem.

For N abelian (H commutative): yes, the conjecture holds, since
in this case J(H) is the nilradical of H, which is trivial. The reason
J(H) is trivial is that J(LN) is trivial and any nontrivial element of
J(H) would lift to a nontrivial element of J(LN), a contradiction.
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The following result might also be helpful in proving the conjecture.

Proposition 4.4. (Clark) Let φ : R → S be a ring
homomorphism. Suppose that there exists a finite set {x1, . . . , xn}
of left R-module generators of S such that each xi lies in the
commutant CS(φ(R)). Then φ(J(R)) ⊆ J(S).

Proof. See [2, Proposition 3.23] 2

Proposition 4.4 could be used to prove Conjecture 4.3 by applying
it to the case R = H, S = LN, where φ : H → LN is the inclusion.
Then if appropriate generators {x1, x2, . . . , xn} could be found,
then J(H) would be trivial since J(LN) is trivial.
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5. Examples: Galois Group: Rank 4 Elementary Abelian

In what follows, we explicitly construct some (LN)G , aka
“Greither-Pareigis” Hopf algebras.

Let K be the splitting field of the polynomial p(x) = x4 − 10x2 + 1
over Q. Then K = Q(

√
2 +
√

3), and K is Galois with group
G ∼= C2 × C2, G = {1, σ, τ, στ}, σ2 = τ2 = 1.

The Galois action is given as

σ(
√

2 +
√

3) =
√

2−
√

3, τ(
√

2 +
√

3) = −
√

2 +
√

3.

Note that

α =
1

4

(
1 +
√

2 +
√

3 +
√

6
)

is a normal basis generator for K/Q with tr(α) = 1.
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Example 5.1. The subgroup ρ(G ) is a regular subgroup of
Perm(G ) normalized by λ(G ) = ρ(G ). K is a Hopf-Galois
extension of Q; K has the classical Hopf-Galois structure via
H = (Kρ(G ))G = QG . A basis for QG is {1, σ, τ, στ}.

Proposition 5.2. QG is left semisimple as a ring. Its
Wedderburn-Artin decomposition is

QG ∼= Q×Q×Q×Q.

Proof. By Maschke’s Theorem, QG is a left semisimple ring.
Hence by Wedderburn-Artin,

QG ∼= Matn1(D1)× · · · ×Matnm(Dm),

where ni ≥ 1 are integers and the Di are division rings, 1 ≤ i ≤ m.
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Over C, G has exactly 4 one-dimensional irreducible
representations

ρi : G → GL(Wi ),

dimC(Wi ) = 1, given in the tables:

x ρ0(x)

1 1
σ 1
τ 1
στ 1

x ρ1(x)

1 1
σ 1
τ −1
στ −1

x ρ2(x)

1 1
σ −1
τ 1
στ −1

x ρ3(x)

1 1
σ −1
τ −1
στ 1
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Let χi be the character of ρi . Then

b1 =
1

4

∑
x∈G

χ0(x−1)x =
1

4
(1 + σ + τ + στ) ,

b2 =
1

4

∑
x∈G

χ1(x−1)x =
1

4
(1 + σ − τ − στ) ,

b3 =
1

4

∑
x∈G

χ0(x−1)x =
1

4
(1− σ + τ − στ) ,

b4 =
1

4

∑
x∈G

χ1(x−1)x =
1

4
(1− σ − τ + στ) ,

are pairwise orthogonal idempotents in CG with

b1 + b2 + b3 + b4 = 1,

cf. [7, Exercise 6.4].
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Now, each irreducible representation extends to a C-algebra
homomorphism:

ρ̃i : CG → EndC(Wi ) ∼= C,

0 ≤ i ≤ 3.

There is an isomorphism

ρ̃ : CG → C× C× C× C

given as:
ρ̃(x) = (ρ̃0(x), ρ̃1(x), ρ̃2(x), ρ̃3(x)).

One has
ρ̃(b1) = (1, 0, 0, 0),

ρ̃(b2) = (0, 1, 0, 0),

ρ̃(b3) = (0, 0, 1, 0),

ρ̃(b4) = (0, 0, 0, 1),

cf. [7, Proposition 10].
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Since {b1, b2, b3, b4} is also a Q-basis for QG , one has

QG ∼= Q×Q×Q×Q.

2
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Example 5.3. (Byott) Let η ∈ Perm(G ) be defined as

η(σkτ l) = σk−1τ l+k−1, 0 ≤ k , l ≤ 1.

Then 〈η〉 ∼= C4 is a regular subgroup of Perm(G ) normalized by
λ(G ).

By Theorem 3.2, K is a Hopf-Galois extension of Q; K has a
Hopf-Galois structure via the 4-dimensional Q-Hopf algebra
H = (K 〈η〉)G .

By Proposition 4.1, a Q-basis for H is {v1, vη, vη2 , vη3} with

v1 = 1,

vη =
1

2

(
η + η3

)
+

√
3

2

(
η − η3

)
vη2 = η2

vη3 =
1

2

(
η + η3

)
−
√

3

2

(
η − η3

)
.
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Proposition 5.4. The Q-Hopf algebra H of Example 5.3 is left
semisimple as a ring. Its Wedderburn-Artin decomposition is

H ∼= Q×Q×Q(
√
−3).

Proof. H contains
1 + η2

4
and ±η + η3

4
, and so, H contains

b1 =
1

4

(
1 + η + η2 + η3

)
,

b2 =
1

4

(
1− η + η2 − η3

)
,

and

b3 = 1− b1 − b2 =
1− η2

4
;

b1, b2, b3 are mutually orthogonal idempotents.
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Let

a =

(
1− η2

2

)(
1

2
(η + η3) +

√
3

2
(η − η3)

)
=

√
3

2
(η − η2).

Then {b1, b2, b3, a} is a Q-basis for H. Note that a2 = −3b3.

Now as a vector space over Q,

H = Qb1 ⊕Qb2 ⊕Qb3 ⊕Qa,

and as Q-algebras,

H ∼= Q×Q×Qb3[a],
∼= Q×Q×Q(

√
−3),

the isomorphism in the last component given as b3 7→ 1Q(
√
−3),

a 7→
√
−3. By Wedderburn-Artin, H is left semisimple. 2
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By direct calculation,

G (H) = N ∩ ρ(G ) = {1, η2}.
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6. Conclusions, I

Regarding the rank 4 elementary abelian example above:

In the case where K has the classical Hopf-Galois structure
(Example 5.1),

H1 = (Kρ(G ))G = QG ∼= Q×Q×Q×Q,

In the case where K has the non-classical Hopf-Galois structure
(Example 5.3),

H2 = (KN)G ∼= Q×Q×Q(
√
−3).
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The two Hopf-Galois structures on K are distinct in that the two
Hopf algebras are non-isomorphic as Q-algebras, and hence,
certainly non-isomorphic as Hopf algebras.

Moreover, both Hopf algebras are left semisimple, and thus by
Proposition 2.4, both Jacobson radicals are trivial.
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7. Examples: Galois Group: Symmetric Group on 3 Letters

Let K be the splitting field of x3 − 2 over Q. Let ω denote a
primitive 3rd root of unity and let α = 3

√
2. Then K = Q(α, ω) is

Galois with group S3 = 〈σ, τ〉 with σ3 = τ2 = 1, τσ = σ2τ .

The Galois action is given as σ(α) = ωα, σ(ω) = ω, τ(α) = α,
τ(ω) = ω2.

Observe that

β =
1

3
(1 + α + α2 + ω + ωα + ωα2)

is a normal basis generator for K/Q with tr(β) = 1.
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Example 7.1. The subgroup ρ(S3) is a regular subgroup of
Perm(S3) normalized by λ(S3). K is a Hopf-Galois extension of Q;
K has the classical Hopf-Galois structure via
H = (Kρ(S3))S3 = QS3. A basis for QS3 is {1, σ, σ2, τ, τσ, τσ2}.

Proposition 7.2. QS3 is left semisimple as a ring. Its
Wedderburn-Artin decomposition is

QS3 ∼= Q×Q×Mat2(Q).

Proof. (Computer-free proof) By Maschke’s Theorem, QS3 is a left
semisimple ring.
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Hence by Wedderburn-Artin,

QS3 ∼= Matn1(D1)× · · · ×Matnm(Dm),

where ni ≥ 1 are integers and the Di are division rings, 1 ≤ i ≤ m.

Over C, there are exactly two 1-dimensional representations of S3,

ρ0 : S3 → GL(W0),

given as ρ0(x) = 1, ∀x ∈ S3, and

ρ1 : S3 → GL(W1),

defined as ρ1(σi ) = 1, and ρ1(τσi ) = −1 for i = 0, 1, 2.
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There is exactly one 2-dimensional representation

ρ2 : S3 → GL(W2),

defined as ρ2(σi ) =

(
ωi 0
0 ω2i

)
, and ρ2(τσi ) =

(
0 ω2i

ωi 0

)
, for

i = 0, 1, 2, where ω is a primitive 3rd root of unity, [7, §2.4, §2.5,
§5.3].
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Let χi be the character of ρi . Then

b1 =
1

6

∑
x∈S3

χ0(x−1)x =
1

6

(
1 + σ + σ2 + τ + τσ + τσ2

)
,

b2 =
1

6

∑
x∈S3

χ1(x−1)x =
1

6

(
1 + σ + σ2 − τ − τσ − τσ2

)
,

and

b3 =
1

3

∑
x∈S3

χ2(x−1)x =
1

3

(
2− σ − σ2

)
are pairwise orthogonal idempotents in CS3 with

b1 + b2 + b3 = 1,

cf. [7, Exercise 6.4].
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Now, each irreducible representation extends to a C-algebra
homomorphism:

ρ̃i : CS3 → EndC(Wi ) ∼= Matni (C), ni = dimC(Wi ),

0 ≤ i ≤ 2.
There is an isomorphism

ρ̃ : CS3 → C× C×Mat2(C)

given as:
ρ̃(x) = (ρ̃0(x), ρ̃1(x), ρ̃2(x)).

One has

ρ̃(b1) =

(
1, 0,

(
0 0
0 0

))
,

ρ̃(b2) =

(
0, 1,

(
0 0
0 0

))
,

ρ̃(b3) =

(
0, 0,

(
1 0
0 1

))
.

cf. [7, Proposition 10].
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We seek 4 elements of CS3 which correspond to a basis for the
simple component Mat2(C).

We find elements b1,1, b1,2, b2,1, b2,2 ∈ CS3 which satisfy the
multiplication table

(1)b1,1 b1,2 b2,1 b2,2
b1,1 b1,1 b1,2 0 0
b1,2 0 0 b1,1 b1,2
b2,1 b2,1 b2,2 0 0
b2,2 0 0 b2,1 b2,2
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We require that

b1,1 + b2,2 = b3 =
1

3
(2− σ − σ2),

with b21,1 = b1,1 and b22,2 = b2,2, and so we guess that

b1,1 =
1

3

(
1− σ + τσ − τσ2

)
,

and

b2,2 =
1

3

(
1− σ2 − τσ + τσ2

)
.

(Note: I used trial and error, but one could probably solve a
non-linear system to get this.)

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaThe Structure of Hopf Algebras Acting on Galois Extensions



Now for b1,2 and b2,1: We require that

(b1,2 + b2,1)2 = b1,1 + b2,2 =
1

3
(2− σ − σ2),

and so, we could guess that

b1,2 + b2,1 =
1

3
τ
(
2− σ − σ2

)
since 1

3(2− σ − σ2) is idempotent and τ2 = 1.

But we also know that b1,2 satisfies the equation b2,2X = 0, which
converts to a 6× 6 linear homogeneous system with many
solutions, one of which is

b1,2 = −1

3

(
σ − σ2 − τ + τσ2

)
.

With this choice for b1,2, then

b2,1 =
1

3

(
σ − σ2 + τ − τσ

)
.
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Now (as one can check) a C-basis for CS3 is

B ′ = {b1, b2, b1,1, b1,2, b2,1, b2,2},

with

b1 =
1

6
(1 + σ + σ2 + τ + τσ + τσ2),

b2 =
1

6
(1 + σ + σ2 − τ − τσ − τσ2),

b1,1 =
1

3
(1− σ + τσ − τσ2),

b1,2 = −1

3
(σ − σ2 − τ + τσ2),

b2,1 =
1

3
(σ − σ2 + τ − τσ),

b2,2 =
1

3
(1− σ2 − τσ + τσ2).
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The C-algebra isomorphism

ρ̃ : CS3 → C× C×Mat2(C)

is now given as

ρ̃(b1) =

(
1, 0,

(
0 0
0 0

))
,

ρ̃(b2) =

(
0, 1,

(
0 0
0 0

))
,

ρ̃(b1,1) =

(
0, 0,

1

3

(
1− ω ω2 − ω
ω − ω2 1− ω2

))
,

ρ̃(b1,2) =

(
0, 0,

1

3

(
ω2 − ω 1− ω2

1− ω ω − ω2

))
,

ρ̃(b2,1) =

(
0, 0,

1

3

(
ω − ω2 1− ω2

1− ω ω2 − ω

))
,

ρ̃(b2,2) =

(
0, 0,

1

3

(
1− ω2 ω − ω2

ω2 − ω 1− ω

))
.
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Now, B ′ is also a Q-basis for QS3. Hence, there is a Q-algebra
isomorphism

φ : QS3 → Q×Q×Mat2(Q)

φ(b1) =

(
1, 0,

(
0 0
0 0

))
,

φ(b2) =

(
0, 1,

(
0 0
0 0

))
,

φ(b1,1) =

(
0, 0,

(
1 0
0 0

))
,

φ(b1,2) =

(
0, 0,

(
0 1
0 0

))
,

φ(b2,1) =

(
0, 0,

(
0 0
1 0

))
,

φ(b2,2) =

(
0, 0,

(
0 0
0 1

))
.

2
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Example 7.3. Let λ : S3 → Perm(S3) denote the left regular
representation of S3 in Perm(S3); λ(S3) is a subgroup of
Perm(S3) normalized by λ(S3). Then K is a Hopf-Galois extension
of Q; K has a Hopf-Galois structure via the 6-dimensional Q-Hopf
algebra H = (Kλ(S3))S3 .

Proposition 7.4. H is left semisimple as a ring. Its
Wedderburn-Artin decomposition is

H ∼= Q×Q×Mat2(Q).
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Proof. By [1, (6.12) Example, p. 55],

H = {a0 + a1σ + τ(a1)σ2 + b0τ + σ2(b0)στ + σ(b0)σ2τ}

where a0 ∈ Q, a1 ∈ Q(ω), and b0 ∈ Q(α).

Write a1 = a1,0 + a1,1ω, b0 = b0,0 + b0,1α + b0,2α
2, for

a1,0, a1,1, b0,0, b0,1, b0,2 ∈ Q.

Then a typical element of H can be written as

a0 + (a1,0 + a1,1ω)σ+ (a1,0 + a1,1ω
2)σ2 + (b0,0 +b0,1α+b0,2α

2)τ

+ (b0,0 + b0,1αω
2 + b0,2α

2ω)στ + (b0,0 + b0,1αω + b0,2α
2ω2)σ2τ

= a0 + a1,0(σ + σ2) + a1,1(ωσ + ω2σ2) + b0,0(τ + στ + σ2τ)

+ b0,1(ατ +αω2στ +αωσ2τ) + b0,2(α2τ +α2ωστ +α2ω2σ2τ).
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Thus
C = {v1, v2, v3, v4, v5, v6},

with

v1 = 1

v2 = σ + σ2,

v3 = ωσ + ω2σ2,

v4 = τ + στ + σ2τ,

v5 = ατ + αω2στ + αωσ2τ,

v6 = α2τ + α2ωστ + α2ω2σ2τ,

is a Q-basis for H; this is the “standard” basis for H.
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The multiplication table for the vi is:

(2)

1 v2 v3 v4 v5 v6
1 1 v2 v3 v4 v5 v6
v2 v2 2v2 −1− v2 − v3 2v4 −v5 −v6
v3 v3 −1− v2 − v3 2 + v3 −v4 −v5 2v6
v4 v4 2v4 −v4 3 + 3v2 0 0
v5 v5 −v5 2v5 0 0 6− 6v2 − 6v3
v6 v6 −v6 −v6 0 6 + 6v3 0
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Now, as in Proposition 7.2, c1 = b1 = 1
6(1 + v2 + v4) and

c2 = b2 = 1
6(1 + v2 − v4) form a pair of mutually orthogonal

idempotents in H.

We search for matrix units satisfying table (1).

One has that

c1,1 =
1

3
(1 + v3) =

1

3
(1 + ωσ + ω2σ2)

and

c2,2 =
1

3
(1− v2 − v3) =

1

3
(1 + ω2σ + ωσ2)

are a pair of orthogonal idempotents.

A bit of trial and error using table (2) (really!) shows that the
other matrix units are c1,2 = 1

6v6 and c2,1 = 1
3v5.
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The set
C ′ = {c1, c2, c1,1, c1,2, c2,1, c2,2}

is a Q-basis for H. There is a Q-algebra isomorphism:

ψ : H → Q×Q×Mat2(Q),

c1 7→
(

1, 0,
(
0 0
0 0

))
,

c2 7→
(

0, 1,
(
0 0
0 0

))
,

c1,1 7→
(

0, 0,
(
1 0
0 0

))
,

c1,2 7→
(

0, 0,
(
0 1
0 0

))
,

c2,1 7→
(

0, 0,
(
0 0
1 0

))
,

c2,2 7→
(

0, 0,
(
0 0
0 1

))
.

Clearly, H is left semisimple. 2
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Recall that

β = 1
3(1 + α + α2 + ω + ωα + ωα2)

is a normal basis generator for K/Q. By Proposition 4.1, there is
another Q-basis for H,

D = {v1 = 1, vσ, vσ2 , vτ , vτσ, vτσ2},

where
vx =

∑
g∈S3

g(β)λ(g)λ(x)λ(g)−1,

for x ∈ S3.
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The basis matrix of D (with respect to C ) is:

MD =



1 0 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 −2/3
0 0 0 1/3 −2/3 1/3


One has

MDvD = v .
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Now,

M−1D =



1 0 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 1 1
0 0 0 1 0 −1
0 0 0 1 −1 0


so that

M−1D v = vD .

Thus, in terms of D, the basis C ′ computed above is

C ′ = {16(1+vσ+vσ2+vτ+vτσ+vτσ2), 16(1+vσ+vσ2−vτ−vτσ−vτσ2),

1
3(1− vσ2), 16(vτ − vτσ), 13(vτ − vτσ2), 13(1− vσ)}.
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8. Conclusions, II

Regarding the S3 examples above:

In the case where K has the classical Hopf-Galois structure
(Example 7.1),

H1 = (Kρ(S3))S3 = QS3 ∼= Q×Q×Mat2(Q),

In the case where K has the non-classical Hopf-Galois structure
(Example 7.3),

H2 = (Kλ(S3))S3 ∼= Q×Q×Mat2(Q).

By a direct computation (or use [1, (6.9) Example]),

G (H2) = λ(S3) ∩ ρ(S3) = {1}.
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These two Hopf algebras are isomorphic as Q-algebras, yet are
non-isomorphic as Hopf algebras.

Both Hopf algebras are left semisimple, and thus by Proposition
2.4, both Jacobson radicals are trivial.
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9. A New Hopf Algebra Structure

Fact 9.1. Suppose ϕ : S → G is a bijection of sets with G a
group. Then there is a unique group structure on S that makes ϕ
an isomorphism of groups.

For x , y ∈ S , define

xy = ϕ−1(ϕ(x)ϕ(y)).
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Proposition 9.2. Let K be a field. Let ϕ : A→ H be an
isomorphism of K -algebras with H a K -Hopf algebra. Then there
is a unique Hopf algebra structure on A that makes ϕ an
isomorphism of K -Hopf algebras.

Proof. Define ∆A : A→ A⊗K A by the rule

∆A(a) = (ϕ−1 ⊗ ϕ−1)∆H(ϕ(a)),

define εA : A→ K by the rule

εA(a) = εH(ϕ(a)),

and define SA : A→ A by the rule

SA(a) = ϕ−1SH(ϕ(a)),

for a ∈ A.

Then (A,mA, λA,∆A, εA, SA) is a K -Hopf algebra and ϕ is an
isomorphism of K -Hopf algebras. 2
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Now by Propositions 7.2 and 7.4, the composition of maps

QS3
φ→ Q×Q×Mat2(Q)

ψ−1

→ H,

is an isomorphism of Q-algebras.

Put ϕ = ψ−1 ◦ φ. Then by Proposition 9.2, there is a Q-Hopf
algebra structure on QS3 with

∆QS3(a) = (ϕ−1 ⊗ ϕ−1)∆H(ϕ(a)),

εQS3(a) = εH(ϕ(a)),

and
SQS3(a) = ϕ−1SH(ϕ(a)),

for a ∈ QS3; ϕ is an isomorphism of Q-Hopf algebras.
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This Q-Hopf algebra structure on QS3 admits exactly one
grouplike element (since H has only one grouplike).

Consequently, this Q-Hopf algebra structure on QS3 is distinct
from the ordinary Q-Hopf algebra structure on QS3 (in which there
are 6 grouplikes).

What is ∆QS3(σ)?
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Appendix: Decomposition of QS3 (Computer Solution)

gap> LoadPackage("wedderga");

true

gap> QG:=GroupRing(Rationals,SymmetricGroup(3));

<algebra-with-one over Rationals, with 2 generators>

gap> WedderburnDecomposition(QG);

[ Rationals, Rationals, <crossed product with center

Rationals over CF(3) of a group of size 2> ]

gap> WedderburnDecompositionInfo(QG);

[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals,

3, [ 2, 2, 0 ] ] ]
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What this means is that

QS3 ∼= Q×Q×Q(ω)[x : ωx = xω2, x2 = 1],

where ω is a primitive 3rd root of unity; {1, ω, x , ωx} is a Q-basis
for the component Q(ω)[x : ωx = xω2, x2 = 1].

Now, the companion matrix of the polynomial x2 + x + 1 is

W =

(
0 −1
1 −1

)
, and the companion matrix of x2 − 1 is

X =

(
0 1
1 0

)
. Moreover, WX = XW 2.

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, AlabamaThe Structure of Hopf Algebras Acting on Galois Extensions



As one can check, {I2,W ,X ,WX} is a Q-basis for Mat2(Q), thus
as rings,

Q(ω)[x : ωx = xω2, x2 = 1] ∼= Mat2(Q).

Thus,
QS3 ∼= Q×Q×Mat2(Q).
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